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Abstract

The onset of buoyancy-driven convection in an initially isothermal, quiescent fluid layer confined between the two

infinite horizontal plates is analyzed by using propagation theory. For the system heated rapidly from below with a

constant heat flux, the dimensionless critical time sc to mark the onset of convective instability is presented as a function

of the Rayleigh number and the Prandtl number. The present predictions show that sc decreases with increasing Prandtl

number for a given Rayleigh number. Available experimental data for water and silicone oil indicate that visible motion

is detected first and then, an obvious deviation of the heated surface temperature from its conduction solution occurs.

The difficulty of defining the detection time of visible motion is discussed in comparison with experiments.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection is encountered in nature and in a

number of engineering problems involving heat transfer.

A well-known example is B�enard convection. When an

initially quiescent fluid layer confined between two

horizontal plates is heated rapidly from below, the basic

temperature profile of heat conduction develops with

time and buoyancy-driven convection sets in at a certain

time. In this transient system, an important issue is the

prediction of the critical time tc that marks the onset of

convective instability. This transient problem, may be

called an extension of classical Rayleigh–B�enard prob-
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lems. Morton [1], Yang and Choi [2], Tan and Thorpe

[3], Foster [4], and Jhaveri and Homsy [5] conducted the

related instability analyses by using the frozen-time

model, propagation theory, maximum-Rayleigh-number

criterion, amplification theory, and stochastic model,

respectively. The first two models are based on linear

theory and yield the critical time to mark the onset of a

fastest growing mode of convective instability. The third

model is the simplest one, which is based on the con-

duction temperature, and the last two models require the

initial conditions at the heating time t ¼ 0. These three

models deal with the detection time of manifest con-

vection. However, there is confusion about the charac-

teristic times, which are the onset time of growing

instabilities ðtcÞ, the time when the first visible motion

can be detected ðtDÞ, and the detection time of manifest

convection ðtmÞ.
Experimental observations by Nielsen and Sabersky

[6], Chu [7], and Goldstein and Volino [8] show that,
ed.
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Nomenclature

a dimensionless horizontal wavenumber,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
a� modified wavenumber, as1=2

d depth of fluid layer (m)

g gravitational acceleration constant (ms�2)

k thermal conductivity (Wm�1 K�1)

Nu Nusselt number, averaged value of qwd=
kðTw � TiÞ

Pr Prandtl number, m=a
qw heat flux at the bottom wall (Wm�2)

Raq Rayleigh number based on the heat flux,

gbqwd4=kam
Ra� modified Rayleigh number, Raqs2

r0 temporal growth rate of the conduction field

r1 temporal growth rate of the perturbed tem-

perature field

T temperature (K)

t time (s)

W1 perturbed vertical velocity (ms�1)

w1 dimensionless vertical velocity disturbance,

W1d=a
Z vertical distance (m)

x; y; z dimensionless Cartesian coordinates,

ðX ; Y ; ZÞ=d

Greek symbols

a thermal diffusivity (m2 s�1)

b volumetric thermal expansion coefficient

(K�1)

DT thermal penetration depth (m)

dT dimensionless thermal penetration depth,

DT=d
r2

1 horizontal Laplacian operator, o=ox2 þ
o=oy2

h0 dimensionless basic temperature, k T � Tið Þ=
qwd

h1 dimensionless temperature disturbance,

T1gbd3=am
m kinematic viscosity (m2 s�1)

s Dimensionless time, at=d2

f similarity variable, z=
ffiffiffi
s

p

Subscripts

c critical state

D detection

i initial state

m manifest convection

rms root-mean-square quantity

0 basic state

1 perturbed state

Superscript

* amplitude function
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with rapid heating, cell-like patterns like B�enard cells

appear suddenly over the heated bottom surface at a

certain time tD, subject to an appropriate measurement

technique. Chu’s experimental results show that the first

visible motion is detected at the characteristic time tD
earlier than tm. For the present problem of a constant

heat flux, the characteristic time tm is the time to ensure

an obvious deviation of the heated wall temperature Tw
from its conduction solution. Here the critical time tc to
mark the onset of convective instability is defined as that

time when a fastest growing, single mode of infinitesimal

disturbances sets in. During the period 06 t < tc the

temporal growth rate of temperature disturbances will

be less than that of the conduction temperature. For

tP tc incipient disturbances will grow faster and at

t ¼ tm a change in Tw from the conduction solution will

be detected experimentally. This phenomenon is rea-

sonably represented by the analysis based on propaga-

tion theory among the above models even though it is a

rather simple one.

Propagation theory deals with instability problems of

developing, nonlinear temperature profiles for large

Rayleigh numbers. In the transient conduction system it
is assumed that at t ¼ tc infinitesimal temperature dis-

turbances are propagated mainly within the thermal

penetration depth DT . Therefore, with the length scaling

factor DT all the variables and parameters having the

length scale are rescaled. In a usual deep-pool system of

DT /
ffiffiffiffi
at

p
, the most important parameter becomes the

time-dependent Rayleigh number, which results by

replacing the length scale in the Rayleigh number with

DT . Here a is the thermal diffusivity. Under normal

mode analysis the self-similar transformations are

forced, and the critical time to mark the onset of a

fastest growing mode of convective instability is ob-

tained for a given Rayleigh number and Prandtl num-

ber. The resulting stability criteria agree with

experimental data reasonably well in other transient

systems [2,9–12].

Here we analyze the instability problem of an initially

isothermal, quiescent fluid layer with the bottom

boundary heated uniformly with a constant heat flux qw
starting from t ¼ 0. For the present system the insta-

bility criteria will be obtained based on propagation

theory and compared with available experimental data

and other theoretical results.
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2. Stability analysis

2.1. Disturbance equations

The system considered here is a Newtonian fluid

layer having a constant initial temperature Ti, which is

placed between the two infinite horizontal plates. For

time tP 0, the fluid layer of depth d is heated from

below with a constant heat flux qw, and its upper

boundary is kept at Ti. The schematic diagram of the

basic system of pure conduction is shown in Fig. 1. For a

high qw, buoyancy-driven convection will set in at a

certain time. The Boussinesq approximation is employed

to describe the buoyancy force.

Under linear stability theory the infinitesimal dis-

turbances caused by incipient convective motion are, in

the usual dimensionless form, expressed [2,4]

1

Pr
o

os

�
�r2

�
r2w1 ¼ r2

1h1; ð1Þ

oh1
os

þ Raqw1

oh0
oz

¼ r2h1; ð2Þ

where s, w1, h1, h0 and r2
1 denote the dimensionless

forms of the time, the vertical velocity disturbance, the

temperature disturbance, the basic temperature, and the

horizontal Laplacian, respectively. The dimensionless

Cartesian coordinates ðx; y; zÞ have the scale of d and the

subscripts ‘1’ and ‘0’ denote the perturbed state and the

basic state, respectively. The proper boundary condi-

tions are given by

w1 ¼
@w1

@z
¼ @h1

@z
¼ 0 at z ¼ 0; ð3aÞ

w1 ¼
@w1

@z
¼ h1 ¼ 0 at z ¼ 1; ð3bÞ

wherein the condition of no slip is applied to the two

rigid boundaries. As stated above, the lower boundary

condition is qw ¼ constant and the upper one is

Ti ¼ constant. The important parameters to describe the

present system, the Prandtl number Pr and the Rayleigh

number Raq (sometimes called the dimensionless heat

flux), are defined as

Pr ¼ m
a
; Raq ¼

gbqwd4

kam
: ð4Þ
constant heat flux qw 

rigid 

rigid 

g 

T=Ti 

∞→t0=t

1t

)( 12 tt >

X

Z

Fig. 1. Sketch of the basic conduction state considered here.
Here m, g, b and k represent the kinematic viscosity,

the gravitational acceleration constant, the thermal

expansion coefficient, and the thermal conductivity,

respectively. In the case of very slow heating the basic

temperature profile eventually becomes linear and time-

independent, and the critical Rayleigh number reaches

the well-known value of Raq;c ¼ 1296. This critical value

is independent of Pr. But in a rapidly heated system with

large Raq, the resulting transient stability problem is

complicated. For a given Pr and Raq, the critical time sc
to mark the onset of convective instability should be

found by using Eqs. (1)–(3).

2.2. Basic state of heat conduction

Before convective motion sets in, the heat transfer is

dominated by heat conduction and the dimensionless

temperature profile is represented by

oh0
os

¼ o2h0
oz2

; ð5Þ

with the following initial and boundary conditions,

h0 ¼ 0 at s ¼ 0 and z ¼ 1; ð6aÞ

oh0
oz

¼ �1 at z ¼ 0: ð6bÞ

The exact solution for the dimensionless temperature

h0 is obtained by using the Fourier and the Laplace

transforms of Eqs. (5) and (6) to yield

�h0 ¼ 1� z� 2
X1
m¼1

1

lm

cos lmzð Þ exp
�
� l2

ms
�
; ð7aÞ

h0 ¼
ffiffiffiffiffi
4s

p X1
m¼0

ð�1Þm ierfc
mffiffiffi
s

p
��

þ f
2

�

� ierfc
mþ 1ffiffiffi

s
p

�
� f
2

��
; ð7bÞ

where �h0ðs; zÞ ¼ h0ðs; fÞ, lm ¼ m� 1=2ð Þp, f ¼ z=s1=2,
and ierfcð�Þ is the integral of the complementary error

function.

For deep-pool systems with DT /
ffiffiffiffi
at

p
, the Leveque-

type solution is given by

h0 ¼
ffiffiffiffiffi
4s

p 1ffiffiffi
p

p exp

��
� f2

4

�
� f
2

erfc
f
2

� ��

¼
ffiffiffiffiffi
4s

p
ierfc

f
2

� �
; ð8Þ

which is in good agreement with Eq. (7) for s < 0:05, as
shown in Fig. 2. With this solution the following rela-

tionship is obtained in coordinates s and f with

oh�0=os ffi 0:

o�h�0
os

¼ � f
2s

Dh�0 for s < 0:05; ð9Þ
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Fig. 2. Comparison of Eq. (8) with Eq. (7). For s6 0:05 the

difference between two equations becomes negligible.
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where �h�0; h
�
0

� �
¼ �h0ðs; zÞ; h0ðs; fÞ

� �
=

ffiffiffi
s

p
, and D ¼ d=df.

Since we are concerned with the deep-pool case of large

Raq and small s, the above Leveque-type solution (8) is

primarily used for the stability analysis.

2.3. Stability equations

At the critical time to mark the onset of convective

instability, disturbances are assumed to exhibit hori-

zontal periodicity, and normal mode analysis is em-

ployed. Then the perturbed quantities can be expressed

as

w1ðs; x; y; zÞ; h1ðs; x; y; zÞ½ � ¼ w�
1ðs; zÞ; h

�
1ðs; zÞ

� 	
� exp iðaxx

�
þ ayyÞ

	
; ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, and the horizontal wavenumber ‘‘a’’ is

given by a ¼ a2x þ a2y
h i1=2

. Propagation theory, employed

to find the onset time of convective instability, i.e., the

critical time tc, is based on the assumption that in deep-

pool systems the infinitesimal temperature disturbances

are propagated mainly within the thermal penetration

depth DT at the time of the onset of convective insta-

bility. Based on this assumption, the following ampli-

tude relation is obtained in dimensionless form from

Eqs. (1) and (10):

w�
1

h�1
� d2T � s; ð11Þ

from the balance between viscous and buoyancy terms.

Here dT ¼ DT=d ¼ 3:21s1=2
� �

is the usual dimensionless

thermal penetration depth defined by writing h�0jz¼dT
=

h�0jz¼0 ¼ 0:01. Eqs. (2) and (10) yield

Ra� w�=s
� �

Dh� � h�; ð12Þ
1 0 1
where Ra� ¼ Raqs2. There are many possible forms of

dimensionless amplitude functions of disturbances that

satisfy relations (11) and (12), for example,

w�
1ðs; zÞ; h

�
1ðs; zÞ

� 	
¼ snþ1�w�

1ðs; zÞ; sn�h
�
1ðs; zÞ

h i
: ð13Þ

If the related process is still conduction-dominant

with Ra� ¼ constant at small time, it is probable that
�h�1ðs; zÞ ¼ h�ðfÞ, �w�

1ðs; zÞ ¼ w�ðfÞ and oh�1=os ¼ �ðf=
ð2sÞÞDh�. This parallels Eq. (9) and means that the

amplitude function of temperature disturbances has a

form similar to Eq. (8) for small s. The result of

Ra� ¼ constant is also obtained using the stochastic

model [5,13] and the amplification theory [4,14].

The above scaling analysis for a deep-pool system of

dT / s1=2 suggests relations of the form w�
1 ¼ s3=2w�ðfÞ

and h�1 ¼ s1=2h�ðfÞ with n ¼ 1=2. This condition shows

that the temporal growth rate of the perturbed temper-

ature field ðr1Þ is equal to that of the conduction field

ðr0Þ. Here r0 and r1 are defined, based on Eqs. (7) and

(10), respectively

r0 ¼
1

h0;rms

dh0;rms

ds
; ð14aÞ

r1 ¼
1

h1;rms

dh1;rms

ds
; ð14bÞ

where the subscript ‘rms ’ denotes the root-mean-square

quantity, i.e., ð�Þrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

V ð�Þ
2
dV


 �
=V

r
, and V is the

volume of the system considered. Eq. (8) yields

r0 ¼ 3=ð4sÞ. For s < sc temperature disturbances are

conceptually so small in comparison with the average

quantities of conduction temperature that with r1 < r0
the latter ones are still much larger. Therefore the system

is considered stable when r1 is less than r0 and the

neutral stability curve is obtained with r0 ¼ r1 ¼ 0 for

sc ! 1. The related concept is well illustrated in the

numerical work of Choi et al. [15]. In all the previous

studies based on propagation theory [2,9–12] the sta-

bility analyses were conducted with n ¼ 0, which is the

condition required to satisfy the above constraint on the

temporal growth rates in isothermally heated systems. It

is noted that the stability criteria with n ¼ 0 are of the

same order as those with n ¼ 1=2, and a lower n-value
yields a smaller sc-value. The dimensionless time s plays
dual roles of time and length.

Now, with n ¼ 1=2 the self-similar stability equations

are obtained from Eqs. (1) and (2) for small s

D2

�

� a�
2
�2

þ 1

2Pr
fD3



� D2 � a�

2

fDþ 3a�
2
��

w�

¼ a�
2

h�; ð15Þ

D2

�
þ 1

2
fD� a�

2

�
þ 1

2

��
h� ¼ Ra�w�Dh�0; ð16Þ
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Fig. 3. Marginal stability curve for deep-pool systems of

Pr ! 1.
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by treating Ra� and a� as eigenvalues. Here a� ¼ as1=2.
The appropriate boundary conditions are transformed

from Eq. (3) to give

w� ¼ Dw� ¼ Dh� ¼ 0 at f ¼ 0; ð17aÞ

w� ¼ Dw� ¼ h� ¼ 0 as f ! 1: ð17bÞ

For a given Pr the minimum value of Ra� should be

found in a plot of Ra� vs a� using the principle of the

exchange of stabilities. In other words, the minimum

value of s, i.e., sc and its corresponding wavenumber ac
are obtained for a given Pr and Raq. Since time is frozen

by letting oð�Þ=os � 0 under the frame of amplitude

coordinates s and f instead of s and z (see Eqs. (7) and

(8)), propagation theory may be called the relaxed fro-

zen-time model by implicitly treating time as the

parameter. However, it considers the time dependency.

In the conventional frozen-time model the terms

involving oð�Þ=os in Eqs. (1) and (2) are neglected in

amplitude coordinates s and z. This results in

D2 � a�
2


 �2

w� ¼ a�
2

h� and D2 � a�
2


 �
h� ¼ Ra�w�Dh�0

instead of Eqs. (15) and (16). The resulting stability

criteria become independent of Pr.
3. Solution procedure

The stability Eqs. (15)–(17) were solved by employing

the outward shooting scheme. In order to integrate these

stability equations the appropriate values of D2w�, D3w�

and h� at f ¼ 0 are assigned for a given Pr and a�. Since
the stability equations and their boundary conditions

are all homogeneous, the value of D2w�ð0Þ can be given

arbitrarily and the value of the parameter Ra� is as-

sumed. After the initialization this eigenvalue problem

can be solved numerically by following the method

illustrated by Kim et al. [12]. In the limiting case of

Pr ! 1 the stability equations are reduced to simpler

forms because the inertia terms involving Pr in Eq. (15)

are negligible. The marginal stability curve is shown in

Fig. 3, wherein Ra�c ¼ 31:03 and a�c ¼ 0:61. From these

values sc and ac are obtained for a given Raq.
For sc > 0:05, Eqs. (15) and (16) are retained, and

Eq. (7b) is used. In boundary condition (7b) the upper

boundary f ! 1 is replaced by z ¼ 1, i.e., f ¼ 1=s1=2c

and in Eqs. (15) and (16) Ra� and a� are replaced by

Raqs2c and as1=2c . Also, in Eq. (7b), s is replaced with sc
but f is maintained. Since sc is the fixed parameter, the

resulting stability equations are a function of f only and
Table 1

Present critical conditions obtained from propagation theory for deep

Pr 0.01 0.1 0.7 1

scRa1=2q 46.4 17.0 8.85 8.12

acs1=2c 0.94 0.92 0.82 0.80
the physics of Eqs. (9) and (11) is still satisfied. For a

given Pr and sc the minimum Raq-value and its corre-

sponding wavenumber ac are obtained. For the frozen-

time model the solution procedure is almost the same as

above.
4. Results and discussion

For the deep-pool system heated rapidly from below

with qw ¼ constant, the critical conditions predicted by

propagation theory are summarized in Table 1 and Fig.

4. It is believed that for a given Raq and Pr a fastest

growing, single mode of infinitesimal disturbances

would set in at s ¼ sc with a ¼ ac. The present critical

time sc in Table 1 yields the correlation, based on the

case of Pr ! 1.

sc ¼ 5:57 1

"
þ 0:55

Pr

� �5=8
#4=5

Ra�1=2
q

for sc < 0:05 with PrP 0:01; ð18Þ

which has an error bound of 6%. This correlation shows

that sc decreases with an increase in Raq and also Pr. The
Pr-effect becomes pronounced for Pr < 1, which means

the inertia terms make the system more stable. For

Pr > 7, sc and ac are almost independent of Pr, as shown
-pool systems of various Pr-values

7 10 100 1
6.11 5.96 5.61 5.57

0.67 0.66 0.61 0.61



10-2 10-1 100 101 102101

102

103

R
a qτ c2

Pr

Fig. 4. Effect of Pr on Raqs2c for deep-pool systems.

 

 

  

Fig. 6. Comparison of characteristic times with available

experimental data.
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in Fig. 4, and therefore, the following critical conditions

of Pr ! 1 may be used up to moderate Pr-values

sc ¼ 5:57Ra�1=2
q ; ð19aÞ

ac ¼ 0:61s1=2c : ð19bÞ

For the whole time domain the stability criteria from

propagation theory are shown in Fig. 5. The results ob-

tained from the conventional frozen-time model are also

indicated. With increasing sc they approach the well-

known critical conditions of Raq;c ¼ 1296 and ac ¼ 2:55
since the basic temperature profile becomes linear. The

frozen-time model yields the lower bounds of sc and ac,
as shown in the figures. It is known that the terms

involving oð�Þ=os in Eqs. (1) and (2) stabilize the system.
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Fig. 5. Effect of Pr on stability criteria
For the present system of qw ¼ constant, Nielsen and

Sabersky [6] observed the change in the temperature

gradient of silicone oil ðPr ¼ 45; 896; 4770Þ on a shad-

owgraph. In their experimental range of 9:2� 102 6

Raq 6 1:9� 107 their data points are well-correlated by

sm ffi 19Ra�1=2
q for Raq P 104; ð20Þ

as shown in Fig. 6. Here sm is the characteristic time to

ensure an obvious deviation of Tw from the conduction

solution. It is interesting that with the present sc-values
sm ffi 3:2sc over the whole time domain.

Kim and Kim [13] reported results of a Monte-Carlo

simulation by employing random fluctuations, starting
τ c

10-4
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10 1

0 5 10 15 20 25

 propagation theory
 frozen-time model

7
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0.7

Pr=0.1

2.55
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8

: (a) sc vs. Raq and (b) sc vs. ac.
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from t ¼ 0 and fixing the wavenumber, similar to the

work of Jhaveri and Homsy [5]. With the fastest grow-

ing, particular wavenumber they solved their nonlinear

evolution equations and defined tm as that time when

the Nusselt number Nu ¼ qwd=kðTw � TiÞh ið Þ attains the

minimum in the plot of Nu vs. s. Here h i denotes the

horizontal averaged value. Based on this undershoot

time of Nu, they obtained correlations: smRa1=2q ¼ 20:2
for Pr ¼ 45, 25.6 for Pr ¼ 7, and 49.5 for Pr ¼ 0:7. Based
on the present sc-values in Table 1, these values corre-

spond to sm=sc ¼ 3:6, 4.2 and 5.6, respectively. This

means that for a given Raq, sm decreases with increasing

Pr. Tan and Thorpe [3] suggested a simple model

assuming that at the onset of manifest convection the

following relation is satisfied, maximum of

gbZ4=mkð ÞoT0=oZ ¼ 1296. This is based on the relation

of Raq;c ¼ 1296. This results in sm ¼ 20:7Ra�1=2
q and is

independent of Pr. This model becomes invalid for small

Pr. It is interesting to note that a common relation is

seen in all the above theoretical results, that is, for small

times dT / s1=2 and Raqd
4
T � constant at sc or sm, as

shown in the scale relations (11) and (12). For large Pr,
the results are comparable to Eq. (20).

The above phenomena are illustrated in detail by

Goldstein and Volino [8]. Their experimental data for

water are converted and listed in Table 2. They measured

the detection time of convection ðtDÞ in the water layer

ðPr ffi 7Þ using the three methods: interferometer visual-

ization (data sets No. 1–6), liquid crystal visualization

(data set No. 7), and thermocouple data (data set No. 8).

Here tD denotes the time at which the first visible motion

is detected by each measurement technique. They aver-

aged the data from each experimental set of 23–66 runs.

The numbers associated with interferometer visualiza-

tion, Nos. 1 through 6, correspond to the first, second,

third, fourth, fifth, sixth largest amplitudes, respectively.

The values of Ra�D ¼ Raqs2D
� �

and a�D ¼ as1=2D


 �
in the

table have been obtained based on the present sc-values
(Ra1=2q sc ¼ 6:11 for Pr ¼ 7 in Table 1). The data sets 1

through 6 show that sD ¼ 1:80–2:79ð Þsc. They reported

that experimental sD-values are strongly dependent upon
Table 2

Values of acs1=2c converted from Goldstein and Volino’s [8] water dat

Number sD=sc Ra�D

1 1.80 121

2 2.09 163

3 2.32 201

4 2.50 234

5 2.69 271

6 2.79 291

7 3.37 425

8 3.39 430

(Basis) scRa1=2q ¼ 6:11 for Pr ¼ 7 from Table 1; Ra�D ¼ Raqs2D ¼ Ra�c sð
boundary imperfections. The converted value

a�D sc=sDð Þ1=2, i.e., acs1=2c is almost 0.8, which is larger than

0.61 in Table 1. This means that the average size of

incipient cells is smaller than the present prediction but it

is almost constant during the growth period of 1:80sc 6
s6 2:79sc. The a�D-values of No. 7 correspond to the

wavenumbers perpendicular and parallel to the optical

windows for a liquid crystal sheet below the heated sur-

face, respectively, which agree well with the results re-

ported in Table 1. Considering the standard deviation in

a�D of 19–26% listed in Table 2, it may be stated that the

present predictions given in Table 1 represent water data

to a certain degree. Data sets 7 and 8 lead to sD ffi 3:4sc
and sD ffi 21Ra�1=2

q , respectively, which compare well

with Eq. (20).

Chu [7] observed the first motion at t ffi 0:3tm for

Raq ¼ ð2:56–6:37Þ � 105 by photographing paths of

seeded particles in syrup Pr ¼ 4:5� 105ð Þ, and he re-

ported that convection usually starts at the edge of an

enclosure. His data are shown in Fig. 6 and his sD-values
are located near the present sc-values. His data yield the

relation of sm ffi 3:3sD, which is almost the same as the

present one, i.e., sm ffi 3:2sc with sD ¼ sc.
The above experimental and theoretical results for

large-Pr systems suggest that a fastest growing mode of

instabilities, which sets in at t ¼ tc, will grow with time

until manifest convection appears near the lower surface

and is detected at t ¼ tm. In connection with the growth

period (from the onset time of convective instabilities to

the detection time of manifest convection), Foster [14]

suggested the relation of tm ffi 4tc. This relation is sup-

ported by the present study approximately. It seems

evident that during the period tc 6 t6 tm, the cell size is

almost constant, but its vertical growth continues.

During this growth period, convective motion seems

relatively weak since the related heat transport is well

represented by the conduction state. Its detection time

depends, to a certain degree, on the measurement

method used, and linear theory may be applied. If

boundary imperfections exist, multiple-mode instabili-

ties will arise. Therefore, well-defined single-mode cells

seem to appear rarely in experiments with rapid heating.
a at the dimensionless detection time sD

a�D acs1=2c

1.03 0.77

1.13 0.78

1.18 0.77

1.23 0.78

1.30 0.79

1.34 0.80

1.19, 1.25 0.65, 0.68

– –

D=scÞ2; a�D ¼ as1=2D ; a�Dðsc=sDÞ
1=2 ¼ acs1=2c .
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The present stability criteria are approximate ones

because propagation theory forces the self-similar

transformation. For more refined analysis numerical

simulations are required. In addition, new measures to

mark the onset of convective instability and manifest

convection need definition. The onset time of intrinsic

instability will be the earliest time at which the fastest

growing mode of infinitesimal motion sets in. It is ex-

pected that the incipient instability will grow to manifest

convection at the earliest time. For the present constant-

heat-flux system, the time to mark an obvious deviation

of the heated surface temperature from the conduction

solution (tm, e.g. the undershoot time) can be a definitive

measure of the detection time of manifest convection

even though earlier motion can be detected. For t > tm,
the averaged horizontal size of cells will increase sig-

nificantly due to merging of cells with time until flow

becomes fully developed, as shown in experimental re-

sults of Goldstein and Volino [8]. Linear theory loses its

validity under these conditions.
5. Conclusion

The critical condition to mark the onset of convective

instability in an initially quiescent, horizontal fluid layer

heated from below with a constant heat flux has been

analyzed by using propagation theory. This model has

been improved by considering the temporal growth rates

of the unperturbed and the perturbed temperature field.

The sc-values have been obtained as a function of Raq
and Pr. It is believed that the onset time of intrinsic

instability, i.e., the earliest time when the above two

growth rates become the same, is located near the

present sc-values. A more refined analysis is now being

conducted numerically.

The present study shows that the characteristic time

to mark the onset of visible motion requires its careful

definition. In the present constant-heat-flux system the

characteristic time tm should be considered to be the time

at which an obvious deviation of the heated surface

temperature from its conduction state occurs, for

example, the undershoot time in the plot of Nu vs. s. For
PrP 7, available experimental and theoretical results

yield the approximation tm ffi 3:2tc. For t6 tm, the

velocity magnitude is relatively small and therefore, the

heat transfer rate is not enhanced significantly. It is

interesting that the present predictions based on prop-

agation theory cover the whole domain of time and at

large times the Rayleigh number approaches the well-

known value of Raq;c ¼ 1296.
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